resonador termico

Crean el primer resonador térmico

Los dispositivos termoeléctricos, que pueden generar energía cuando un lado del dispositivo tiene una temperatura diferente a la del otro, han sido objeto de mucha investigación en los últimos años. Ahora, un equipo en el MIT ha ideado una nueva forma de convertir las fluctuaciones de temperatura en energía eléctrica. En lugar de requerir dos entradas de temperatura diferentes al mismo tiempo, el nuevo sistema aprovecha las oscilaciones en la temperatura ambiente que ocurren durante el ciclo día-noche.

El nuevo sistema, llamado resonador térmico, podría permitir el funcionamiento continuo durante años de los sistemas de teledetección por ejemplo, sin necesidad de otras fuentes de alimentación o baterías, según los investigadores.

Los hallazgos están siendo reportados en la revista Nature Communications, en un documento escrito por el estudiante de postgrado Anton Cottrill, el profesor de Ingeniería Química de Carbon P. Dubbs, Michael Strano, y otros siete en el Departamento de Ingeniería Química del MIT.

Otros inventos como La Cortina de Enfriamiento han surgido de investigaciones en prestigiosas universidades.

El concepto del resonador térmico

«Básicamente, inventamos este concepto de la nada», dice Strano. «Hemos construido el primer resonador térmico. Es algo que puede sentarse en un escritorio y generar energía a partir de lo que parece nada. Estamos rodeados de fluctuaciones de temperatura de todas las frecuencias diferentes todo el tiempo. Estas son una fuente de energía sin explotar «.

 

Si bien los niveles de potencia generados por el nuevo sistema hasta ahora son modestos, la ventaja del resonador térmico es que no necesita luz solar directa. Genera energía a partir de los cambios de temperatura ambiente, incluso a la sombra. Eso significa que no se ve afectado por cambios a corto plazo en la cobertura de nubes, condiciones de viento u otras condiciones ambientales. Puede ubicarse en cualquier lugar que sea conveniente, incluso debajo de un panel solar, en sombra perpetua, donde incluso podría permitir que el panel solar sea más eficiente al eliminar el calor residual, dicen los investigadores.

Se ha demostrado que el resonador térmico supera a un material piroeléctrico comercial de tamaño idéntico, un método establecido para convertir las fluctuaciones de temperatura en electricidad, en un factor de más de tres unidades en términos de potencia por área, según Cottrill.

Los materiales utilizados

Los investigadores se dieron cuenta de que para producir energía a partir de ciclos de temperatura, necesitaban un material optimizado para una característica poco reconocida llamada efusividad térmica. Una propiedad que describe con qué facilidad el material puede extraer calor de su entorno o liberarlo. La efusividad térmica combina las propiedades de la conducción térmica (la rapidez con que se puede propagar el calor a través de un material) y la capacidad térmica (la cantidad de calor que se puede almacenar en un volumen determinado de material). En la mayoría de los materiales, si una de estas propiedades es alta, la otra tiende a ser baja. La cerámica, por ejemplo, tiene una alta capacidad térmica pero baja conducción.

Para evitar esto, el equipo creó una combinación de materiales cuidadosamente diseñada. La estructura básica es una espuma de metal, hecha de cobre o níquel, que luego se recubre con una capa de grafeno para proporcionar una conductividad térmica aún mayor. Luego, la espuma se infunde con un tipo de cera llamada octadecano, un material de cambio de fase, que cambia entre sólido y líquido dentro de un rango particular de temperatura elegido para una aplicación determinada.

Una muestra del material hecho para probar el concepto mostró que, simplemente en respuesta a una diferencia de temperatura de 10 grados Celsius entre la noche y el día, la pequeña muestra de material producía 350 milivoltios de potencial y 1.3 milivatios de potencia. Suficiente para alimentar pequeños sensores ambientales o sistemas de comunicaciones.

Su funcionamiento

Esencialmente, explica Strano, un lado del dispositivo captura el calor, que luego irradia lentamente al otro lado. Un lado siempre se queda atrás del otro cuando el sistema intenta alcanzar el equilibrio. Esta diferencia perpetua entre los dos lados se puede cosechar a través de la termoeléctrica convencional. La combinación de los tres materiales (espuma de metal, grafeno y octadecano) lo convierte en «el material de efusión térmica más alta de la literatura hasta la fecha», dice Strano.

Mientras que la prueba inicial se realizó usando el ciclo diario de 24 horas de temperatura del aire ambiente, ajustar las propiedades del material podría permitir cosechar otros tipos de ciclos de temperatura, como el calor del ciclo de encendido y apagado de los motores en un refrigerador o de maquinaria en plantas industriales.

Fuente: MIT.

Artículo gracias a blog de ACR Latinoamérica

0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *